Building Quake-Resistant Structures in the Classroom

Every day somewhere on our planet, there is an earthquake, but only the destructive ones in populated areas grab our attention. On January 12, 2010, a 7.0 magnitude earthquake hit Haiti. The next day the headline from the British Broadcasting Corporation (BBC) was Haiti Devastated by Massive Earthquake. The article tells how the earthquake, with its epicenter just outside of the country’s capital of Port-au-Prince, affected an estimated three million people.

A few months later, an earthquake with a magnitude of 6.9 occurred in China’s Qinghai Province on April 13, 2010. An early report from the New York Times was headlined Earthquake Kills Dozens in Northwest China. Later reports would reveal that this earthquake left many buildings destroyed, over 2,000 individuals dead, and even more seriously injured. Other notable earthquakes include the 2010 earthquake in Chile and the 2011 earthquake and tsunami that devastated northern Japan.

Seeing and reading about the aftermath of earthquakes can lead students to believe that nothing can be done to prevent or lessen the destruction and injury. To help students gain an appreciation of the technology currently available, it is important to make students aware of the “before earthquake scene.”

Civil engineers study the effects of earthquakes on foundations and soils. Their research often provides evidence that helps them design earthquake resistant structures. The structures are often able to resist loads that are superimposed on them through earthquake shaking. This is because the structures bend and sway with the motion of an earthquake, or are isolated from the movement by sliders. Watch the Science 360 video “Dissecting an Earthquake”  to learn more about the engineers’ work.

Activity

A great way to introduce students to earthquake-resistant buildings is to have them build their own structures. The following lesson takes approximately two to three days for students to complete in the classroom. The lesson brings in many concepts of the History and Nature of Science standard of the National Science Education Standards.

Note: Prior to this activity, students should have learned about plate tectonics, earthquakes, the Mercalli Scale and the Richter Scale.

In this lesson, students are the civil engineers. By building their own structure with toothpicks and marshmallows, students will learn how engineers construct buildings to withstand damage from earthquakes. Students will test their buildings on an earthquake simulation (a pan of gelatin). They will then re-engineer the structure based on its performance.

To introduce the concept of earthquake-resistant buildings, watch this clip of researchers testing a three-story structure.

After watching the video, you should explain to students that they will make models of buildings and conduct an experiment to test how well their structures stand up under the stress of an earthquake.

The materials needed for this lesson are items that you can find in any grocery or convenience store. You will need toothpicks, marshmallows (miniature), gelatin, and paper to sketch drawings on.

Safety Note: Tell students they should never put anything in their mouths in a science lab. The marshmallows and gelatin are not for eating.

Distribute 30 toothpicks and 30 marshmallows to each student. Explain that engineers have limited resources when building structures. Each structure should be at least two toothpick levels high, buildings must contain at least one triangle, and buildings must contain at least one square.

Do not give as many constraints to IEP or ELL students. You may also want to illustrate how to make cubes and triangles using toothpicks and marshmallows. Show them how to break a toothpick approximately in half. Explain to the students that cubes and triangles may be stacked to make towers. The towers can have small or large “footprints” or bases.

When students have built their structures, place the structures on the pans of gelatin and shake the gelatin to simulate an earthquake. Students should take notes about how their building “responds” during an earthquake. While shaking the gelatin, you may want to ask students these questions: What type of waves are being simulated? How do you know this?

After students have tested their structures, in the next class period they should redesign and rebuild them and test them again. Students should focus on the following questions when redesigning their building: What can they do to make it stronger? Did it topple? Should they make the base bigger? Make the structure taller or shorter?

Students can design and rebuild as many times as the class period allows.

Additional Resources and Ideas

Have students pretend that they are engineers for a civil engineering company. Instruct them to create a flyer or write a letter to convince their company to let them design a better building or structure. (Students should also describe the risks of the area and give background information.) For gifted students, have them do this for a building in the area. This will engage the students and make them think critically about something within their community.

Have your students monitor quake activity weekly by checking the list maintained on the U.S. Geological Survey site. This web site lists the latest earthquakes magnitude 5.0 and greater in the world. The web site also provides a link to a map for each quake location.

The Middle School Portal 2 (MSP2) project has a digital library of resources focused on middle school math and science. You can search the MSP2 collection to find many excellent resources. Here are three to get you started:

Plate Tectonics
This publication offers a sampling of activities and animations to support students as they piece together the plate tectonics puzzle. In some activities, students examine different sources of evidence to try to figure out where and how Earth has changed. They will experience those cherished “aha!” moments when natural phenomena start to make sense. Also included in this publication are excellent reading resources to fill the gaps in students’ and teachers’ understanding of plate tectonics.

Observe Video Taken During an Earthquake
These videos were created for middle and high school students and were taken by security cameras during an earthquake near Seattle, Washington. Each clip shows a view of a different location either within or outside a building. Because the quake originated 30-35 miles beneath the earth’s surface, it caused minimal damage despite having a magnitude of 6.8. Time stamps in the lower left corner of each video clip allow students to determine when shaking started and ended at each location. Students are able to use control buttons to play, pause, and move forward and backward through the clips.

Seismic Waves
An instructional tutorial introduces students to seismic waves caused by earthquakes. Students answer questions as they move through the tutorial and investigate how P and S waves travel through layers of the earth. In one activity, students can produce and view wave motion in a chain of particles. A second activity introduces Love and Rayleigh waves. In a third activity, students study P and S waves by activating four seismographs, watching the resulting P and S waves, and answering interactive questions. Five web sites about waves, seismic action, and earthquakes are included.

We Want Your Feedback

We want and need your ideas, suggestions, and observations. What would you like to know more about? What questions have your students asked? We invite you to share with us and other readers by posting your comments. Please check back often for our newest posts or download the RSS feed for this blog. Let us know what you think and tell us how we can serve you better. We appreciate your feedback on all of our Middle School Portal 2 publications. You can also email us at msp@msteacher.org.

This post was originally written by Brittany Wall and published June 4, 2010 in the Connecting News to the National Science Education Standards blog. The post was updated 3/6/12 by Jessica Fries-Gaither.

Connecting Classrooms, Sharing Real Data

This article first appeared in Beyond Penguins and Polar Bears online magazine April 1, 2008. The article has been modified to include middle school math and science examples. All versions of this article are licensed under a Creative Commons License.

————————————————————————-

Collaborative and real-time data projects engage students in collecting and sharing local data; communicating with other students around the world; using and analyzing “pooled” data from web-based databases; and accessing unique, primary source information. Even though there is no substitute for direct experiences and active investigation, extending the realm of inquiry through electronic communications can greatly enrich and extend an inquiry approach to science and math teaching.

These kinds of projects are highly motivating to students because they bring classrooms together from across the country and globe in shared learning experiences. Students are required to go beyond their own experience, to share with others, and to consider alternative points of view. Not only do students share data, they share perspectives and cultures. What could be more exciting?

Some wonderful collaborative and real-time data projects have been available online for years. To get a feel for the breadth of available projects, try a few searches in the Internet Projects Registry from the Global School Network (GSN) and in the KIDPROJ index of projects. You will find lists of projects from around the world that cover many disciplines. You can search for projects specific to your curriculum and students’ age levels and even design, post, and moderate a project that your class and others can join. You can also subscribe to both web sites’ listservs to get e-mail updates on new projects when they are listed.

Featured Projects

K-12: Track Spring’s Journey North
Teachers and students in K-12 classrooms are invited to participate in Journey North’s annual global study of wildlife migration and seasonal change. A free Internet-based citizen science project, Journey North enables students in 11,000 schools to watch the wave of spring as it unfolds. Students monitor migration patterns of monarch butterflies, hummingbirds, whooping cranes, and other animals; the blooming of plants; and changing sunlight, temperatures, and other signs of spring. Students share their local observations with classmates across North America and beyond, and look for patterns on real-time maps. As they put local observations into a global context – and connect with field scientists – participants are better prepared to explore how climate and other factors affect living things.

Each Journey North study features many entry points and resources that address learning standards: Journey North for Kids reading booklets and lessons, stunning photos and video clips, weekly migration updates, interactive maps, instructional units, and compelling migration stories.

Center for Innovation in Engineering and Science Education: Collaborative Projects

Noon Day Project
The goal of the Noon Day Project is to have students measure the circumference of the earth using a method that was first used by Eratosthenes over 2000 years ago. Students at various sites around the world will measure shadows cast by a meter stick and compare their results. From this data students will be able to calculate the circumference of the earth.

International Boiling Point Project
The purpose of this project is to discover which factor in the experiment (room temperature, elevation, volume of water, or heating device) has the greatest influence on boiling point.

Down the Drain
How much water is used in homes everyday? Would you be surprised to learn that according to the USGS the average American uses between 80-100 gallons (approx. 300 – 375 liters) of water per day? Do people in other parts of the world use more or less water than Americans? This collaborative project helps students find out the answers to these questions. By collecting data on water usage from people around the world students will be able to see how their water use compares to others and determine what they might do to use less water.

Center for Innovation in Engineering and Science Education: Real Time Data Projects

Wonderful World of Weather
By using hands-on activities and real-time data investigations, students can develop a basic understanding of how weather can be described in measurable quantities, such as temperature, wind, and precipitation. The real-time data lessons also address topics such as climate, cloud classification, and severe storms. Students use the Weather Underground web site to collect and analyze weather from around the world. Three sets of activities are included: Introductory Activities, Real-Time Data Activities, and Language Arts Activities. A Literature Connection page with selected prose and poetry with a weather or season theme is a part of the site.

Musical Plates
Earthquakes, a scientific and physical phenomenon, affect our lives in many ways. In this project, students use Real-Time earthquake and volcano data from the Internet to explore the relationship between earthquakes, plate tectonics, and volcanoes.

The Stowaway Adventure
This multidisciplinary Internet-based learning experience has been designed to expose students to real world problem solving through unique uses of instructional technologies. In particular, students will use real time data from the Internet to track a real ship at sea, determine its destination and predict when it will arrive. In addition, they will have the opportunity to monitor the weather conditions at sea and predict when rough weather might impact on the ship’s arrival time. The focus is on math concepts and navigation.

The GLOBE Program
The GLOBE (Global Learning and Observations to Benefit the Environment) Program brings together students, teachers, and scientists from around the world to learn more about the environment. Students use established protocols to collect environmental data locally. The data are shared using a global database to further the understanding of Earth as a system. For a school or classroom to submit data for any of the projects, at least one teacher must be trained in the GLOBE science measurement protocols and education activities by attending a GLOBE Teacher Workshop.

However, data from around the world has been archived since 1995 and can be accessed and downloaded by country, state, or region, or specific school by anyone. The Teacher’s Guide, which contains hundreds of lessons, protocols, and field guides, is searchable by grade band and concept.

ePals
ePals offers K-12 students and teachers around the world a free and safe environment for building and exchanging knowledge based on protected connectivity tools, evidence-based curricula and authentic, collaborative learning experiences. The ePals Global Learning Community is the largest online community of K-12 learners, enabling more than half a million educators and millions of students across 200 countries and territories to safely connect, exchange ideas, and work together. ePals projects cover the topics of global warming, habitats, maps and others.

We Want Your Feedback
We want and need your ideas, suggestions, and observations. What would you like to know more about? What questions have your students asked? We invite you to share with us and other readers by posting your comments. Please check back often for our newest posts or download the RSS feed for this blog. Let us know what you think and tell us how we can serve you better. We appreciate your feedback on all of our Middle School Portal 2 publications. You can also email us at msp@msteacher.org. Post updated 4/14/2012.

Math Starters: Projects to Begin the Year!

If you want to “hook” your class on math right from the start, you may want to consider one of these real-world projects. Students deal with real data in these investigations—collecting, presenting, and analyzing their findings. As they work on the NCTM Data Analysis and Probability Standard, they apply school mathematics in contexts arising outside of mathematics, as recommended in the NCTM Connections Standard.

Down the Drain: How Much Water Do You Use?
In this Internet-based collaborative project, students collect data from their classmates and their household members about water usage. The goal is to determine the average amount of water used by one person in a day. They can share that information with other classes online and compare the average amount of water used per person per day in other parts of the country and the world. The project goes beyond merely collecting data to considering some real questions on wasted water. Information on how to set up the project, how to share data online, and how to publish student findings is included.

Boil, Boil, Toil and Trouble: The International Boiling Point Project
Which do you think has the greatest influence on the boiling point of water: room temperature, elevation, volume of water, or heating device? To answer this question requires input from people all over the world, and this online collaboration allows your students to enter the investigation. They will boil water, under controlled conditions, record information, and post it online. They can analyze the data sent in by others worldwide and reach their own conclusions on what makes a pot of water boil.

Musical Plates: A Study of Earthquakes and Plate Tectonics
In this series of lessons, students use real-time data to solve a problem, study the correlation between earthquakes and tectonic plates, and determine whether or not there is a relationship between volcanoes and plate boundaries. The science and data analysis are more demanding in this project than in the first two, but still within the range of the upper-level middle school student. Four activities, each designed to be used in a 45-minute class period, teach students how to access and interpret real-time earthquake and volcano data. “Real-time” actually does mean data on volcanic and earthquake activity that is going on during the time of your class investigation! Three enrichment lessons follow in this teacher-friendly unit.


We Want Your Feedback
We want and need your ideas, suggestions, and observations. What would you like to know more about? What questions have your students asked? We invite you to share with us and other readers by posting your comments. Please check back often for our newest posts or download the RSS feed for this blog. Let us know what you think and tell us how we can serve you better. We appreciate your feedback on all of our Middle School Portal 2 publications. You can also email us at msp@msteacher.org. Post updated 11/28/2011.

Using Real Data in Life, Earth, and Physical Sciences Classes

When students interpret data and communicate inferences, they are building skills that will help them solve problems throughout their lives. With the investigations featured in these resources, students will collect data and present and analyze their findings. These skills are an important part of the Science as Inquiry strand in the National Science Education Standards.

Monarch Watch
This network of students, teachers, and researchers is dedicated to the tagging, rearing, and study of the monarch butterfly. Each spring, the network publishes a season summary that contains tag recovery data, tips and ideas for teachers and students, observations on monarch populations, and new information on monarch biology. Other projects include life history studies, flight vector analysis, and butterfly gardening. A K-8 science curriculum titled Monarchs in the Classroom (available through the mail) offers standards-based lessons.

Boil, Boil, Toil and Trouble: The International Boiling Point Project
Which do you think has the greatest influence on the boiling point of water: room temperature, elevation, volume of water, or heating device? The answer to this question requires input from people all over the world, and this online collaboration allows your students to enter the investigation. The students will boil water, under controlled conditions, record information, and post it online. They can analyze the data sent in by others worldwide and reach their own conclusions on what makes a pot of water boil.

Musical Plates: A Study of Earthquakes and Plate Tectonics
In this series of lessons, students use real-time data to study the correlation between earthquakes and tectonic plates and to determine whether or not there is a relationship between volcanoes and plate boundaries. The science and the data analysis are demanding but still within the range of upper-level middle school students. Four activities, each designed to be used in a 45-minute class period, teach students how to access and interpret real-time earthquake and volcano data. Three enrichment lessons follow in this teacher-friendly unit.


We Want Your Feedback
We want and need your ideas, suggestions, and observations. What would you like to know more about? What questions have your students asked? We invite you to share with us and other readers by posting your comments. Please check back often for our newest posts or download the RSS feed for this blog. Let us know what you think and tell us how we can serve you better. We appreciate your feedback on all of our Middle School Portal 2 publications. You can also email us at msp@msteacher.org. Post updated 4/19/2012.